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First-passage-time exponent for higher-order random walks: Using Ley flights
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We present a heuristic derivation of the first-passage-time exponent for the integral of a randdm.v@lk
Sinai, Theor. Math. Phy€0, 219 (1992]. Building on this derivation, we construct an estimation scheme to
understand the first-passage-time exponent for the integral of the integral of a random walk, which is numeri-
cally observed to be 0.2200.001. We discuss the implications of this estimation scheme fonttihéntegral
of a random walk. For completeness, we also addressithe case. Finally, we explore an application of
these processes to an extended, elastic object being pulled through a random potential by a uniform applied
force. In so doing, we demonstrate a time reparametrization freedom in the Langevin equation that maps
nonlinear stochastic processes into linear ones.
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I. INTRODUCTION passage-time distribution with the same asymptotic form.
This is the Sparre-Anderson theorgf]. Note thatxé sets
We investigate the general random walk) obeying the the time scale.

equation of motion The previous discussion is one of the few first-passage-
time problems where an exact solution may be easily found

d"x(t) by solving a Fokker-Planck equation with absorbing bound-

ar 7(t), 1) aries. Extensions of this method to more complicated random

walks, such as the second-order random walk described by

wherez is white noise with zero mean and unit variance and

X(0)=Xg. a=x
Let us begin witm=1. Thefirst passage times the time dt2

it takes for the walk to reach zero. When the walk has no

bias, as above, there is no definite time to expect such agxist[2]. However, we investigate the first-passage-time dis-

event and the distribution is a power law. To find the first-tribution for this walk, and for any, in a different way.

passage-time distributiop(t)dt, start an ensemble of ran- At long times, the first-passage-time distribution for these

dom walkers aky,>0 and at tim&=0. Whenever a random processes is a power law,

walk reaches zero, it is removed from the ensemble. Let

P.(x) be the number density of walks at timend positive

X. Py(x) is a solution of the diffusion equation with absorb- pn(t)dt~— —. (5)

ing boundary conditionP(0)=0. More precisely, ton

d?x
= (1), (4)

As computed above3;=3. B, is known to be; [3]. The

P(X)= 1 [exp (X—Xg)2/2t] — exp—[ (x+Xo) 2/2t]} others are most likely not exact fractions and are nontrivial
\/ﬁ critical exponents of certain statistical models. We first
present numerical results far=2,3,4,5. Then, after present-
%ZXOE o2t ) ing a heuristic dgri\{atiqn of3,, we make a quantitative es-
dx\ 27t timate for the shift in first-passage exponent foe 3. Our
analytical results will draw heavily from the theory of Levy
at long times. flights [4]. We also address separately tive « limit [5].

Let g(t) be the integral of this probability distribution Finally, within zero temperature mean field theory, we
over positive values ok. This is the probability that a ran- demonstrate that the first-passage-time exponent innthe

dom walk at timet has not crossed zero. The first-passage=—2 Case is the avalanche size exponent for a dynamically
time distribution is then given by elastic extended object, like a crack front or interface, being

pulled through a random medium by a uniform applied force
at a special point in the parameter spf@g Generically, for
dg Xo dt I - o
p(t)dt= — —dt= — —. (3)  these nonequilibrium systems there is a transition from an
dt V2mt t overall stationary phase to an overall moving phase as the
applied force is increased toward a critical value. Increasing
Although we will not show it, this result is universal for all the applied force from the static side triggévsal motion of
symmetric walks. Any random walk that is equally likely to the interface for some finite amount of time as long as the
move forward as backward by a given amount has a firstapplied force is held fixed from the time the toppling starts

1063-651X/2001/64.)/01612Q@10)/$20.00 64 016120-1 ©2001 The American Physical Society



J. M. SCHWARZ AND RON MAIMON PHYSICAL REVIEW E64 016120

until the time the toppling stops. The distribution of the b=g 782
amount the interface has moved during an “avalanche”
event, i.e., the avalanche size, gives us information about theor the special casg=13, b=(1+i)/+2.

continuity (or discontinuity of the depinning transition and, And finally, if we were to compute the first-passage-time
therefore, has been a focus of study over the yE&rs distribution for the process

IIl. LE VY FLIGHTS dx
, g =, (10
A Levy variable q is a random variable with a power law

distribution for largeq, where £(t) is Levy noise (a Levy variable symmetrically

1 dq djstributed about zeppthen we Wou[d finpl a fir;t-passage-
P(q)dqe — o (6)  time exponent of. Even though the Ly flight is |r_regular:

q” d the position does not cross zero any faster than it does in the
nearest-neighbor random walk. This is the Sparre-Anderson
theorem once more, regarding which we refer the reader to
Ref. [1] for the details.

with 0<3<2. The variancdq?) is infinite for these distri-
butions andB is called theLevy exponenbf q.

A Levy flightis a random walk with each step being a
Levy variable. It is the sum of many independently drawn
Lévy variables. Because of the infinite variance, avy.e

flight is an irregular walk dominated by the few largest Tg obtain the first-passage-time exponggtnumerically

jumps[4]. is not as easy as it might appear. Direct numerical integration
Let Ly(Q) be the distribution 0Q=={L,q;. The Fourier  of the equation of motion becomes more cumbersome with

transformL (k) is theNth power of the Fourier transform of increasingn. To efficiently simulate the equation, we have

P(q). If P(k) were twice differentiable at zero, thén(k)  calculated the free-space propagation kernel:fe,3,4,5
~[1—bk2+O(k3)]N%e*ka2 for b real and positive. This (see Appendix In this context, the propagation kernel is the

is the central limit theorem, and it applies when the secon(?r?bab'“ty td'Str'bUt'%rl_l)Oftx(t0+tso)l’ ?lveln |n||t|al varlutes
moment of a distribution is finite. For a iz variable, the X(to), X'(to), ... X" “(to) and final values x(to

R +1tg), ... x(""(ty+tg). We first generate the highest-order
second moment of the distribution is infinite, aR¢k) has a e derivativex("(ty+t,), and then new values for each

cusp at zero for &p<2. The form of the cusp may be |6 order time derivative untit(ty+t,) is updated.

determjned as fOHO.WS: for smak, th? F_ouri_er transform i; The next time steps is chosen so that the variance for the
approximately the integral of the distribution over the first next value ofx will be smaller. The ratio of the new variance
wavelengthh =2a/k or to the old isy. x should be small so that the walk does not
\C dq 1 becom_e_ negativ_e then p_ositi_ve within one time step. The
f — —=1-C'—=1-C"KA. (7)  Probability of this occurring is exponentially small in the
B inverse ofy. With this algorithm, ifx(ty) is large, the time

_ o S steps are large as well. The number of time steps required for
When there is a cusp, the limiting distribution is not a Gaussthe simulation only grows logarithmically as a function of

IlI. NUMERICAL RESULTS

ian, but has the following forr4] the first-passage time. Near the end of the simulation, when
~ —bNIKIB is small, the time steps become small as well, and accuracy is
Lu(k)=e "Nk k>0 not sacrificed.
N - (8) The first-passage-time distributions for=2,3,4,5 are
Ln(k)=e P"NK" k<0, shown in Fig. 1 on a log-log scale. Each plot contains ap-

) ) proximately 10 samples in bins of doubling size. Table |
By rescalingk, b can be made into a pure phase. For the casgontains the linear regression values of the exponents. The

whereP(q) is symmetric about zero, the Fourier transform aqits are independent gf over the rangd 0.025,0.005,
is real andb=1. It is clear that this distribution has the jyqicating thaty is small enough.

correct form neak=0, and increasind\ is equivalent to a
rescaling ofk. The limiting distribution gets wider without
changing shape, so it is a fixed point of convolution. IV. THE FIRST-PASSAGE-TIME EXPONENT FOR  n=2

We will need one special nonsymmetric distribution, the  Eqr then=2 casex(t) is the integral of a random walk.
distribution of a flight composed of only positive steps. In|n other words, the variable that executes the random walk is
this case,Ly(Q) is zero for Q negative, therefore (k) x'(t), the velocity. To exploit this fact, we introduce a new
must be analytic in the lower half-plane. In other words,time counteri and divide the time axis into intervalAt;
L (k) for k<0 is the analytic continuation df(k) for k>0.  between the points where the velocity crosses zero. Then the
As k is rotated to—k through negative imaginary valudg’ interval sizesAt; are first-passage times for an ordinary ran-

acquires a phase "#. We conclude that dom walk. o _
_ There is one complication. Referring back to E8), the
b*=be '"F (9)  time scale until a zero-crossing is the initial value squared.
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1 . . . . ponent since we do not expect the last position $tepre-
sponding to the partial time stepo be arbitrarily large.
To continue we need to know two thing&) the distri-

=l

10 bution of N, f(N), and(2) givenN, the probability distribu-
tion of t.
107 The first problem is actually no problem at all. Since the

velocity is just as likely to go up at the start of a time interval

as it is to go down, the position is as likely to be positive as
negative. Therefore, the position is a symmetric walk on the
zero crossingsactually, a symmetric Dey flight with inde-

p(t(Bin Size))
3

10 pendent steps distributed with \ieexponent 1/3 using scal-
ing arguments By the Sparre-Anderson theorelt], the
107 distribution of the first-passade is asymptotically the same

as for an unbiased, simple random walk, and

1

f(N)~ INEZ (13)

FIG. 1. Log-log plot of the probability of a first-passage titne
(in arbitrary unitg occurring within the intervalt/\2,y2t), where  for large N.
the probability has been multiplied by a different constant for each  And now for the second problem. The distribution of the
curve so that they do not overlap. The open circles denote numersym of N-independentt’s, Ly(t)dt, is a L'e/y distribution.
cal data fom=2; the open squares far=3; the open diamonds for  The fact that the steps are distributed withvizeexponent
n=4,; the open triangles fon=5. The solid lines represent the B1=1% and that all of theAt’s are positive fixes the Fourier
results of the linear regression. The size of the symbols is largefansform of the Ley distribution. The inverse Fourier trans-

than the error bars. As we only used double precision in our Simuform can be computed exactly in this case. For large t
lations, there is an upper cutoff in the first-passage time of approxi- '

mately 16°.

dt

N 2
LN(t)dt~tT/2e N’ZT. (12

So right after a zero crossing, the initial value is zero. Since
the probability distribution is singular at zero, the random
walk reaches zero again instantly, and then again, infinitel
many times. This is a well-known property of random
walks—they jiggle about every value before moving on.
Since this affects only the distribution of the smallest times
we cut off the distribution of times near zero by imagining
the system on a lattice. Now we have a finite and discrete s%te
of time intervalsAt; with each interval distributed with the
Levy exponent8;=3. These time intervals are indepen-
dently distributed because the velocity undergoes a simpl
random walk.

To compute the first-passage time for the position, w
must compute the total time= EiNzlAti until the position
becomes negativé is the first zero crossing of the velocity
that happens at a negative value of the position so we a
actually slightly overestimating by summingN intervals.
We can control for this by summing— 1 intervals instead, o g
which would be a slight underestimate. This estimatg bé Is why we refer to our derivation as heuristic.

. ) . All the ingredients are now in place for computirgy.
it over or under, should not affect the first-passage-time &There is a probability (N) for any value ofN, and given\,

we know the probability distribution df So to find the total
distribution of t, we sum up the conditional distributions
Ln(t) weighted by the probability o, or

¥his distribution is small folN2>t, and it may be approxi-
mated by (N/t?)(dt/t) for N><t. Using scaling, analogous
results may be derived fg8+ 3, where a closed form does
not exist.

Now, the time intervals we are adding are not really in-
pendent. This is because we are restricting attention to
Lévy flights that end on th&lth step and this is an atypical
sample of all Ley flights with N steps. However, the prop-
&rties we actually use from the previous distribution—
namely, that it is small foN?>t and the appropriate power
Saw for larget—are the scaling laws for the sum of almost
any collection ofN Lévy variables, whereN is large. So,
although we do not prove it, we assume that these properties
'frold for the correclL(t)dt, or the distribution of the time
elapsed for those vy flights that end on thé&lth step. This

TABLE I. The first-passage-time exponents obtained from fits
to the data shown in Fig. 1.

n X Bn .

2 0.005 0.256:0.001 po(tydt= >, f(N)Ly(t)dt. (13

3 0.005 0.226:0.001 N=0

4 0.005 0.216:0.001

5 0.005 0.204 0.001 Approximating the sum with an integral and using the ap-

proximate scaling form fok (t),
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" (112 1 N TABLE Il. The first-passage-time exponent estimates forrthe
pz(t)dt~f dN f(N)LN(t)dt~f dN—— —dt. =3, which uses the numerical exponential decay constarand
0 0 N3/ t3/2 the numerical results foB,_;. This estimate is to be compared
(14)  with the last column in Table 1.

We obtain the following asymptotic form, n Y A B
1 dt 3 0.005 0.790.02 0.199
po(D)dt=— T (15 4 0.005 1.550.02 0.210
t 5 0.005 1.920.02 0.205

so thatB,=%. This result is unchanged whéhis shifted by
one unit, so that the last step is of no consequence for th
exponent as there are typically many zero crossings, makin
our derivation self-consistent.

Sinai has rigorously computeg, [3]; we have used some
similar methods.

Simost constant. In other words, the distributiiiN) is not
g power law as in the=2 case, but an exponential,

f(N)~e *aCNTD  with \3=0.79+0.02. (18

V. THE FIRST-PASSAGE-TIME EXPONENT FOR n=3 See Table Il and the corresponding Fig. 2. The number of
velocity zero crossings must be odd because the position can

The next random walk we consider is the random surgéyecome negative only after the velocity has become nega-

process, governed by tive. With this exponential distribution, the number of time
3 intervals one must add up is actually quite small. However,
d_X= d_a= (t) (16) adding a finite number of independently drawnvizevari-
a dt " ables distributed with [y exponent; produces a flight

with Lévy exponent;, so it is quite surprising that adding
The acceleration is now an Ordinary random walk. After aof them together, wherdl has a finite mean, leads to any-
time t, the acceleration, velocity and position scaleags  thing other than an exponent &f
~t12 vyp~t%2 andxy,~t2 respectively. We proceed as  And yet, adding a small number obrrelatedLévy vari-
we did for then=2 case. Once again, we divide the time aples does shift the exponent. To quantitatively describe the
axis by the zero crossings of the velocity. The time intervalssorrelation in magnitude, we need to determine how the ini-
At; are now distributed with the vy exponentB,=3. The tial acceleration sets the time scale for eadhinterval. We
sum of N-independentAt’s is approximately zero fot  saw from Eq.(3) for the n=1 random walk that the time
<N*, and for larget, is approximated by scale is the initial value squared. Therefore, the time scale
between two acceleration zero crossings is the initial accel-
eration squared. Because the time between velocity zero

N dt
Lu(Odt~ 3 (17)

=} T T

Proceeding casually, we may think that, as before, the 15 L _
distributionf(N) has Lery exponent of; since that result is
universal for all symmetric walks. We perform an integral
analogous to Eq(14) and obtain a first-passage-timéwvye s
exponeniB;= 3. However, our numerical simulations yield a
Lévy exponent of 0.2260.001. The exponent is closer 30
thang. Clearly, there is something wrong.

The method fails because there are nouwrelationsbe- 10
tween theAx; steps, wheré\x; is the change ix during a
At; step. In the previous=2 case, the velocity undergoes a
simple random walk and so its sign is random after a zero 107 .
crossing. In thim=3 case, the velocity is the integral of a
random walk. It is a differentiable function and so almost
certainly changes sign when it hits zero. Consequently, the - , , ‘
AX; steps alternate in sign. In addition, as the acceleratior 0 5 10 15 20
drifts about, theAx; steps increase in size. The acceleration N

at the beginning of each next-time interval is larger on aver- g, 2. Log-linear plot of the distribution of number of velocity
age than the previous one, making the nakt and, there-  zerg crossing$(N), wheref(N) has been multiplied by a different
fore, the nextAx; larger than the last. constant for each curve so that they shift and do not overlap. The

A large number of alternating, increasing steps will reachsymbols here are the same as in Fig. 1. Forrke3 curve, we
zero quickly. From the numerical simulation, with each o0s-ignore the first data point in the linear regression as there is some
cillation there is a definite probability of reaching zero that ismemory of the initial conditions for this point.

f(N)

-5
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crossings is comprised of many acceleration zero crossingsith c,=1. Keep in mind, in order to compujes, the Levy

the time scale between velocity zero crossings is fixed in thexponenta of the g; variables equals. In terms of the

same way. transformed variables, the distribution bf and f, is given
This argument is somewhat general, so it is nice to verifyby

that it is correct. The coefficient in the formula for the first-

passage-time distribution was computed in R&l. for the P(f)j=ae . (23

case of then=2 random walk by solving the Fokker-Planck

equation with the appropriate boundary conditions. If 9, andg, haddifferentLevy exponentse, > ay, the dis-

tribution of the sum would be

VUo dt Uo llzdt z a o
p2(tvg,Xe—0)dt~—7r —=| —=| — (19 fzdf P(f)P(zy—f)=——— (e 1 2—g"%22),
t4 t J t o (fOP(z2—fy) (a —al)(e e )

24

for larget. Note thatttyp~v(2). Since the acceleration in the 29
n=3 case is exactly the same as the velocity in tke2 ~ For largez;, P(z;)~a,e 2%, i.e., the smaller exponent
case, we can translate this result ime 3 language by re- dominates the tail. However, when = a,= a, we have
placingv with a. Therefore in then=3 case, the square of T .
the initial acceleration determines the time scale until the P(z;) = a"z,e”"%. (29
next zero crossing. Tk dietring i ;

So the square%f the initial acceleration at each time steIn terms ofd; andgp, the probability distribution 06 is
determines the scale of the next time step. Since the accel-

eration is an ordinary random walk, its square has a size In(At,) d(At,)
proportional to the total elapsed time. Therefotd=Tq, P(At,)d(At,) = a? « AL (26)
whereq is a unit Levy variable andT is the total elapsed Aty 2

time. To describe this correlated process, we set the units
time so thatAt, is a unit size Ley variableq,. The next
time stepAt, is no longer unit sized, but has a magnitude
determined by the square of the acceleration or, equivalently, o _

the total elapsed time. So to finkk, we takeAt; and mul- P(z)= Tz}’lefazi. (27)
tiply it by separate, independent, unit\evariableq,. To (i=1)!

find Ats, we take the total elapsed tim&t, +Atp, whichis  the —1)1 is required for normalization. Transforming
the expected square acceleration, and multiplyday In back to the originalAt; variables,

% general, the probability distribution for independent
Lévy variables multiplied together is

equations,
o (InAt)'"t d(At)
At,=qq, P(Ati)d(Ati)—(i —11 At AL (28
At,=(Aty)0s,, We substitutd =N and «= % and this distribution becomes
(20 Ln(t)— the probability distribution of théth-passage time
At;=(At;+At,)q3, of the velocity. Unlike theNth passage time of the accelera-
tion, Ly(t) is not a Lavy stable distribution because of the
At,=(At;+At,+At3)q,. correlations. More specifically, y(t) is the distribution of a
product ofN Lévy variablesllqg; . The expression for thiith
The total timet that has elapsed afté¢ steps is then passage time we derived earliefi§g; + 1), which differs in

N subleading terms from the previous expression.
B Note thatL y(t) coincides with theNth-passage-time dis-
t—Q1i:H2 (1+ai). (@1 tribution for the position in then=2 case. Both the velocity
for n=3 and the position fon=2 are integrals of an=1
The asymptotic distribution is extracted wheys>1. This ~ random walk. Observe that the distributiep(t) is not the
means we need to determine the distribution of products osame as the distribution of the sum of two variables distrib-
Lévy variables. Taking the natural logarithm, the productuted aslL,(t)—there is an additional logarithm. We deter-
becomes a sum. Defing,=In(At,), f;=In(q,), and f, mined L,(t) numerically and it agrees with this foriifig.
=In(q,). We use the following approximate distribution for 3). For higherN, there areN—1 factors of In).
both Levy variables, Before estimating3;, we must make one last argument in
the form of an approximation. Up until this poirt,(t)dt
acg dq assumes that each step is free to be larger than the previous
P(q)dg= ——, one. This is because we have not yet taken into account the
q conditional dependence of the correlation on the position be-
(22 ing positive for the walk to persist. In fact, the generic situ-
P(q)dg=0, q<c ation when the steps are ever-increasing and alternating in
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FIG. 4. Plot of the probability of the ratio of the second com-
plete time interval to the first complete time interval, denoted, as
occurring within the interva[s,s+0.01) for then=3 (the open

FIG. 3. Log-log plot ofL(t) andL,(t) for then=2 case, i.e.,
the probability of a first(or second position passage time (in

arbitrary unit$ occurring within the intervat/\/2,2t). The open squaresandn=4 (the open diamondsandom walk. Both prob-
circles denote numerical data far(t); the inverted triangles for

abilities eventually fall off exponentially as opposed to being dis-
L,(t). While the solid line represents the results of the linear re- y b y PP 9

tributed ad_,(At,)d(At,), indicating that the second step is indeed
gression; the dot-dashed line represents(E§). up to a proportion- 2(Ato)d(At5) g P

i tH—2 andAt—t A K K of an exceptional pick from the distribution for the first time interval.
ality constant, with =2 andAt;=t. As we must keep track of even £ ¢ ;rve contains approximately®18amples.

larger absolute values of the position fér 2, the double precision

constraint cuts off the tail of the distribution even more so Nor : : est_ 1 -2\ [ ;
- which givesB5 =7 — (e™ “"3/4). Substituting the numerical
=2 than forN=1. Once again, the symbols are larger than the givesf™=: — ( ) 9

error bars and there are approximately Iamples value\;=0.79, we find the Ley index 0.199. This result is
PP pies. a shift in the right direction from our original estimate, but it

S . is still too large.
sign is for there to be only one step. This means that walks Figure 4 suggests that our estimation scheme may work

that survive more than one step are special. For these WalkBlatter for n>3 and so we extend the method o

the secqnd step is an exceptlonallplck from the dlstrlbut|on.:4,5, ... Asbefore, we define the two’vg flights of the
Theeasiestvay for the walk to survive is for the second step .. L . .
time and position intervals between velocity zero crossings.

to be approximately the same size as the first step. In oth or n>3, the size correlation factor for the time interval
words, the size of the first step cuts off the distribution of the, - '

second step. The result is that the second step shares t gy ﬂ|ght turns_out to be.the same factor Qf. the elapsed
distribution of the first. For the third step, the position is 'ME as n then—'3 case with eaph Step retaining only the

positive, and now its time interval is distributed the same a emory of the hlgh_est-order derivative. To b_e more precise,
that of the second step would have been. Generalizing o Ee initial accelleranon at the start .of each time interval for
argument, any twacompletetime intervals can simply be en=3 case 1 replaced by the highest-order random vari-
lumped together as one and we conclude that the distributioﬁble' We ignore any other memory eff_ects. Ther_l, for the
of the total afteiN steps is the same as the distribution of thenth-order process, the step-size distribution for Atginter-

; ; Is is governed by the passage time exponent for the (
step sizes aftel/2 steps. In other wordd,y(t)dt is not the va . .
g ; —1)th-order process. Referring back to E88), i=N and
correct distribution folN steps, but_y,(t)dt is. We present v=B,_,. In addition, the correlation in the sign of thex

evidence for the even-numbered complete steps being typf. : _—
cally small in Fig. 4. Fom=3, the second step is, on aver- still persists for thenth-order random walk so the distribu-

age, about five times smaller than the first time interval. Foflon f(N) remains exponential with a decay constant that we

n=4, the second time interval is typically twice as small asdgtermine numerically. .Therefore, theth Leyy exponent
the first. will be a small perturbation about the {- 1)th first-passage-

, 1 I i —2\p =

So we now have all the ingredients to estimate theyLe UM€ exponent with a shift of- B,_,e”“'n. Forn=4 and

: n=>5, we observe that our estimation scheme yields more
exponentB;. We arrive at
accurate results. See Table II.
12 11 As in then=2 case, fon=3 we consider the last partial

p3(t)dt~e"‘3@ 2 — —[In(t)]Ne~2rsNdt (29 time step to pe a fu_II one. Given thm;q,zgt)dt is the more
54 N=0 4N N! appropriate distribution, the bulk of the first-passage time for

a givenN is taken up during the last two stefigp to sub-

1 leading corrections So the last partial time steps should be
:e*ASE{exp{(e*2>‘3/4)]ln(t)}dt, (30) distribute_:ql just_as the first-passage time. We have numeri-
t cally verified this to be the case.
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Majumdaret al. [5] have constructed a completely differ-
ent approximation scheme to compute the first-passage-time p(0t)= fdr\/—e o2t n'(r). (37
exponent for these higher-order random walks. While we

refer the reader to Ref5] for the details, their scheme is ) ] ) )
rather accurate foB, and Bs. Transforming variables ta=r<, we arrive at

VI. THE n=c0 LIMIT 5 t\/_f du e Y2 5(u), (38)
As n increases, we also expect the decay constanb

grow. In fact, in the limit thatn becomes large, the first- ..o\ o Used the fact tha(r) = 5(u)2+/u so thatz'(r)
passage-time exponent reaches a limiting value. We conS|der (u) y2u

the solution to Eq(1) with initial conditionsx(0)=x'(0) Comparing this kernel with the kernel for the=cc ran-

— — N — i
=+ =x(0)=0. Itis dom walk, we see that they are indeed the same. As a result,
t t ¢ the distribution of times for the diffusive field to change sign
x(t)—J dt J dt,_; f dt; n(ty) (3) at one point is the same as the distribution of the first-
passage time for th@=o random walk for long times,

L . . ) ) where the initial conditions are irrelevant.
which is a linear function ofp and therefore is the inner

product of  with a kernel. In this case,
VII. PHYSICAL SYSTEMS

n-1

7(t"). (33

Majumdar et al. [5] have noted that the=c random
walk has the same first-passage-time exponent as a very d
ferent system—the solution of the two-dimensional diffusion
equation with a random initial condition,

X(t)_f dt’ ')(n Y 2(t) (32) Consider a planar crack front moving through rough,
—1)! ' brittle material. In the quasistatic regime, the planar crack
front is a line with long-range static elasticity. There is a
It is easy to see that this expression satisfies(Eq. uniform stress applied to the material, which drives the crack
When solving for the time whenr(t) first becomes zero, front forward. But there are also local, random variations in
it is permitted to rescal&(t) by any finite number, even if the fracture toughness that the crack front needs to overcome
that number is a function of time. This does not change theo move forward. These randomly varying forces are pinning
set of points wherex(t) is zero. Rescaling by" so that forces. The competition between the global pulling and local
y(t)=x(t)/t" and dropping constant factors, pinning forces as mediated by the elasticity of the crack front
determines its dynamics. For small values of the applied
10t | t’ force, the pinning forces eventually dominate and the crack
y(t)=?fodt (l_T front remains stuck. For some finite value of the applied
force, the pinning forces are not strong enough to keep the
In the largen limit, [1— (t'/t)]™ is indistinguishable from crack front in place and it moves forward. The boundary
an exponential in the region where it has the most weighbetween these two phases is the depinning transition.
(t'<nt). The result is that Approaching the depinning transition from the static side,
a small increase in the applied force causes a tiny portion of
1 , the crack front to move forward. This portion causes a few
y(t)= Tf dt’e™ " ty(t). (34 more regions to move forward as well, only to be eventually
0 stopped by more strongly pinned regions. The only role of
the applied force here is to induce the initial motion of the
finy portion. It remains fixed until the local motion of the
crack front stops. Near the depinning transition, there exists a
sequence of these discrete, localiza@lanche eventsith
distribution of sizesr. The avalanche size is defined as the
dp total amount of the crack front that has moved forward dur-
at =V2p, ing these events. A power law distribution of avalanche sizes
as the force approaches the critical force indicates a continu-
(35 ous, second-order-like depinning transition.
p(X.y.0)=7(x,y). Near the depinning transition, the motion of the crack
. o front is jerky with lots of stopping and starting. We therefore
In polar coordinates, the value p{0.) is given by model its dynamics in terms of discrete space and time.
Within an infinite-range model, where each crack front seg-
p(0)= 1 d2re 2 _— 1 7(r.8), (36) ment is coupled equally to every other, the spatial degrges of
\/F freedom along the crack front are averaged out. We dgfine
to be the total number of segments of the crack front that hop
where we have used(x)5(y)=r"15(r)8(6). The angular forward at discrete timé Given that we are only concerned
integration leaves the integral in terms of a new random variwith the few segments that are on the verge of hopping for-
able, 7' (r)=(1/N27) [d#5(r,6). We now have ward,y, is Poissonian distributed. In this infinite-range limit,
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and in the dissipative regime, the meanypfis determined walk does not involve the time lapse of the walk as the upper
by the number of segments that have hopped at the previouwsitoff of the integral is determined by the boundary condi-
time step only. In addition, the mean pf fluctuates statis- tion ony(t) and not the time explicitly.
tically until it reaches zero, whereupon the motion stops. In  Choosing the new time coordinateto tick at the new
the limit of large avalanches where things are changingate,
slowly with time, the equation of motion for the avalanches g

L A -
at the depinning transition is =Y. (42)

dy_ 12
dt 7(t) (39 and using the property of Gaussian noisey(7(t))

=[n(t)/{(d7/dt)], the (Ito) equation pair

in the Ito representatioifthe time derivatives are forward

difference$. Wheny(t) reaches zero, the avalanche is over. dv .,

We refer the reader to R4B] for a more detailed derivation. at Y 7(t), (43
So far, we have neglected any effects like elastic waves

that are indeed present along the crack front. If a piece of the dy

crack front moves forward, that motion creates an extra tran- q Y

sient force on its neighbors as the elastic wave propagates

along the crack front. The extra transient stress is called Become

stress overshoot. This effect is different than pure inertia,

which would be an extra transient stress on the segment itself do

after it jumps. However, we demonstrate that the two effects —=7(1), (44)

are similar in this infinite-range model for a particular value dr

of the stress oversho@€]. If we were to take into account

elastic waves along the crack front, the mearyoflepends yd_y:v

on several previous time steps. In other words, there are dr

higher-order corrections to Eq39) that are usually irrel-

evant in the long time limit. The most significant terms areReplacingy with x=y?/2 completes the transformation. The
the first and second time derivatives, and the first time dezeros ofy are also the zeros ofso the value ofr whenx is
rivative is the only relevant term. If we fine-tune the coeffi- zero is then the avalanche size. We therefore find the distri-
cient ofdy/dt to zero, we arrive at a tricritical point. Here, bution of avalanche sizes to be the distribution of first-
the second-order derivative is the most relevant term and weassage times for the n=2 random walk. It has a ey

obtain the equation of motion exponent;.
We may perform the same transformation on the Fokker-
d?y "™ Planck equation directly, although the motivation then be-
gz =Y . (40 comes obscure. Consider the following probability-

conserving equation,

The variable we are interested in is
JP P . 1 #P 9P 45
T=f dty(t), (41) dat It 27 g Iy
0

for a new quantityP,(x,v, 7). If we integrateP(x,v, ) over
the avalanche size. We emphasize thais determined by all 7, we recover the original Fokker-Planck equation. On the
the boundary conditiog(t;)=0. other hand, if integrat®,(x,v, 7) with respect td from zero
In order to find the distribution of, we use the size of the to infinity, we obtain
avalanche as a new path-dependent time coordinate. We
transform time on each particular path in the path-integral K 102K v 9K
differently, in a way that depends on the historyy¢f). This 97 2 F VYL (46)
transformation alters the density pft)’s at any given time, v

mixing togethery(t)’s from different times so that they ap- e - 5

pear simultaneous. Because of this property, it is difficult to}NhereK(U’y'T)_fodt Pi(v.y,7). Definingx=y=/2, as be-

perform the transformation in the Fokker-Planck equation;ore' gives

but the transformation is easy in the path integral. )
A reparametrization of time, even a path-dependent one, %: l ﬂ_vﬁ

does not affect the answers to questions that do not involve it 2 g2 ax’

the time explicitly. The probability for a stochastic walker to

arrive at pointB from point A is independent of the global which is the Fokker-Planck equation for time=2 random

time, but the probability for a stochastic walker to be at pointwalk. This demonstrates the equivalence of the two prob-

B at timet is not. Similarly, the avalanche size of a given lems.

(47)
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first-passage-time exponent and the decay rate of the prob-

ability of N velocity zero crossings for theth random walk.

The method can be exact for= 2, but not forn=3 because

of correlations. More work is needed to estimate the decay

constant off (N) since this would determine the convergence We begin with the partition function for all higher-order

rate of the exponents to the=c0 value. In addition, we do random walks,

not have any bounds on the error of the first-passage-time .

exponent as the approximation is uncontrolled. We also do _ 1 2

not know which types of correlations for g flights lead to Z= f D[n(t)]exp[ z fo (V)] } (AL)

shifts in exponents and which do not. A classification of

correlations in terms of these two categories might be usefulVe change variables fromy(t) to x(t), where d"x/dt"
We have opted to slice up time in terms of velocity zero= »(t), and use forward difference time derivatives. We

crossings, instead of using the global time in the Fokkerchange variables with the insertion fiég;::;

Planck equation. This approach allows us to analyze th n n ;

higher-orger random WaIFI)<Fs) in terms of a one-dime?l]siona?)[x(t)]5([d X(/dtT] = n(1) to arrive at

Lévy process since the phase variables are the position and X(T)=x;

the time only. The remaining variables are subsumed in the f

(n—1)th-order random walk that the velocity undergoes be-

tween the zero-crossings. _ We then minimize the action to find the classical equation of
With Eq. (42) we have also reparametrized the global mtion with vanishing variations on the boundary for all

time, but in.a different way. We use a path-d.ependent tim&erivatives up to ther(—1)th derivative. In then=2 case
transformation to analyze the avalanche statistics of a nonge find the equation of motion,

linear second-order random walk in terms of the first-
passage-time exponent of the linear second-order random d*x(t)
walk. This allows us to give a novel physical interpretation e
of the first-passage-time exponent for the 2 case. dt
Since the avalanche size does not depend on the globg| : : : :
time, it has been known to us that one can find the stationargolreythf(nol)rizose )t(r('.?_)fin)?wm)?, (c(?)n:stvralntzr(]); )b(t,(e(b_)r)tr:all)ec-
solution of the Fokker-Planck equation corresponding to th?ieléing 0 f 0 f
nonlinear random walk in Eq40) and then arrive at the

APPENDIX: THE KERNEL OF HIGHER-ORDER
RANDOM WALKS

Xx(0)=xq

D[x(t)]exp[ —%fOT[d“x(t)/dt”]Z]. (A2)

(A3)

avalanche size exponent after invoking a simple scaling ar- (3X—3%Xp—v;T—2vyT)

gument[9]. Since this method gives a new derivation of the X(t)=Xg+vot+ 5 t?

avalanche size exponent, it indirectly gives a new derivation T

of the first-passage-time exponent for the2 case. This 2

insight may be useful to construct a derivation&f for n vitvg— T(xf—xo)

=3. . + 2. (A4)
Finally, these higher-order random walks could be rel- T2

evant for more general forms of dynamic stress transfer

along a crack front, or other extended elastic objects. For The path integral is quadratic, so the partition function is
instance, one can approach a fine-tuned critical point whergroportional to the exponential of the classical action. Sub-
the coefficients of the first and second time derivative termstituting the classical solution into the action and integrating
are zero. Then the third-order time derivative is the mosgives the propagation kernel,

relevant term, and we arrive at a higher-order critical point.
While the time reparametrization given by E¢2) does not
allow us to equate the avalanche size exponent with the first-
passage time-exponent in this case, we remain optimistic that

3
Pi(vs,Xs;00 ,Xo)z?exp[—(vf—vo)Z/Zt]
o

either exponent may be relevant for various physical sys- 1 2

e P y phy y Xexp[—6 (Xi=%0) = 5 (v1-+ Vo)t /t3]. (A5)
Note added in proofRecently, we were informed of yet

another estimation scheme to compgtefor n=3 [10]. We normalize the propagation kernel to have integral unity.
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Notice that the kernel is the product of a Gaussian and a  spread faster than the velocity, but it also drifts with time
gaussian irx. Given thatx(t) is the time integral of (t) and  with a coefficient that depends on the velocity. This method
that the sum of Gaussian variables is Gaussian, if the velosvorks for highern giving us the following propagation ker-
ity is Gaussian, so is the position. Not only does the positiomels forn=3,4,5:

1
(vi—vo)— E(af+a0)t

|
2] (AB)
1
il

1 1 1 2
Xexp[—(50400[7)<(Xf—xo)—E(vf+vo)t+l—()(af—a0)t2 120(sf+so)t) ]

(A7)

1
Pi(as,v¢,Xs;80,00,%0) ~ tTmex;{—(1/Z)(af—aO)2]expr —(6t3)

—ag)t?

1 1
(Xt—Xo) — _(UO+Uf)t+ 1

X exp[ —(360£°) @

for n=3,

1 1
Pt(sf,af,vf,xf;so,ao,vo,x0)~t—aexr[—(sf—so)2/2t]exp{ (6t%)| (as—ag) — = (sf+so)t

1
(vi—vo)— 5 (af+a0) + (St —Sp)t

1—2(

X exp[ —(360£°)

for n=4 with da(t)/dt=s(t), and

1 2
(St—s0)— E(uf+u0)t )

il

1 1 , 1 2
(vi—vo)— 5 (af+ao)t+10( —So)t°— 120(Uf+uo)t

1
Pt(uf ,S¢,85,V¢,X5,Ug,Sp,80,V0 yXo)"’ tz—smexr[—(uf—uo)Z/Zt]exp{ _6/t3

—Ug)t

1 1
(a;—ap) — 5 (Sf+SO)t+ 1

X exp{ —(3601%) 2(

X exp{ —(50400t7)

1 , 1
xXex _(12700800/9) (Xf_XO)_E(Uf+UO)t+ 2—8(af_a0)t _84(Sf+50)t
1 2
- _ 4
* 1gg0( e to)! ] (A8)

for n=5 with ds(t)/dt=u(t).
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