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First-passage-time exponent for higher-order random walks: Using Le´vy flights
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We present a heuristic derivation of the first-passage-time exponent for the integral of a random walk@Y. G.
Sinai, Theor. Math. Phys.90, 219 ~1992!#. Building on this derivation, we construct an estimation scheme to
understand the first-passage-time exponent for the integral of the integral of a random walk, which is numeri-
cally observed to be 0.22060.001. We discuss the implications of this estimation scheme for thenth integral
of a random walk. For completeness, we also address then5` case. Finally, we explore an application of
these processes to an extended, elastic object being pulled through a random potential by a uniform applied
force. In so doing, we demonstrate a time reparametrization freedom in the Langevin equation that maps
nonlinear stochastic processes into linear ones.
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I. INTRODUCTION

We investigate the general random walkx(t) obeying the
equation of motion

dnx~ t !

dtn
5h~ t !, ~1!

whereh is white noise with zero mean and unit variance a
x(0)5x0 .

Let us begin withn51. Thefirst passage timeis the time
it takes for the walk to reach zero. When the walk has
bias, as above, there is no definite time to expect such
event and the distribution is a power law. To find the fir
passage-time distributionr(t)dt, start an ensemble of ran
dom walkers atx0.0 and at timet50. Whenever a random
walk reaches zero, it is removed from the ensemble.
Pt(x) be the number density of walks at timet and positive
x. Pt(x) is a solution of the diffusion equation with absor
ing boundary condition,Pt(0)50. More precisely,

Pt~x!5
1

A2pt
$exp@~x2x0!2/2t#2exp2@~x1x0!2/2t#%

'2x0

d

dx S 1

A2pt
e2x2/2tD ~2!

at long times.
Let g(t) be the integral of this probability distributio

over positive values ofx. This is the probability that a ran
dom walk at timet has not crossed zero. The first-passa
time distribution is then given by

r~ t !dt52
dg

dt
dt5

x0

A2pt

dt

t
. ~3!

Although we will not show it, this result is universal for a
symmetric walks. Any random walk that is equally likely
move forward as backward by a given amount has a fi
1063-651X/2001/64~1!/016120~10!/$20.00 64 0161
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passage-time distribution with the same asymptotic fo
This is the Sparre-Anderson theorem@1#. Note thatx0

2 sets
the time scale.

The previous discussion is one of the few first-passa
time problems where an exact solution may be easily fou
by solving a Fokker-Planck equation with absorbing boun
aries. Extensions of this method to more complicated rand
walks, such as the second-order random walk described

d2x

dt2
5h~ t !, ~4!

exist @2#. However, we investigate the first-passage-time d
tribution for this walk, and for anyn, in a different way.

At long times, the first-passage-time distribution for the
processes is a power law,

rn~ t !dt;
1

tbn

dt

t
. ~5!

As computed above,b15 1
2 . b2 is known to be1

4 @3#. The
others are most likely not exact fractions and are nontriv
critical exponents of certain statistical models. We fi
present numerical results forn52,3,4,5. Then, after presen
ing a heuristic derivation ofb2, we make a quantitative es
timate for the shift in first-passage exponent forn>3. Our
analytical results will draw heavily from the theory of Lev
flights @4#. We also address separately then5` limit @5#.

Finally, within zero temperature mean field theory, w
demonstrate that the first-passage-time exponent in thn
52 case is the avalanche size exponent for a dynamic
elastic extended object, like a crack front or interface, be
pulled through a random medium by a uniform applied for
at a special point in the parameter space@6#. Generically, for
these nonequilibrium systems there is a transition from
overall stationary phase to an overall moving phase as
applied force is increased toward a critical value. Increas
the applied force from the static side triggerslocal motion of
the interface for some finite amount of time as long as
applied force is held fixed from the time the toppling sta
©2001 The American Physical Society20-1
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until the time the toppling stops. The distribution of th
amount the interface has moved during an ‘‘avalanch
event, i.e., the avalanche size, gives us information abou
continuity ~or discontinuity! of the depinning transition and
therefore, has been a focus of study over the years@7#.

II. LÉ VY FLIGHTS

A Lévy variable qi is a random variable with a power law
distribution for largeq,

P~q!dq}
1

qb

dq

q
, ~6!

with 0,b,2. The variancêq2& is infinite for these distri-
butions andb is called theLévy exponentof q.

A Lévy flight is a random walk with each step being
Lévy variable. It is the sum of many independently draw
Lévy variables. Because of the infinite variance, a Le´vy
flight is an irregular walk dominated by the few large
jumps @4#.

Let LN(Q) be the distribution ofQ5( i 51
N qi . The Fourier

transformL̃N(k) is theNth power of the Fourier transform o
P(q). If P̃(k) were twice differentiable at zero, thenL̃N(k)
;@12bk21O(k3)#N'e2bNk2

for b real and positive. This
is the central limit theorem, and it applies when the seco
moment of a distribution is finite. For a Le´vy variable, the
second moment of the distribution is infinite, andP̃(k) has a
cusp at zero for 0,b,2. The form of the cusp may b
determined as follows: for smallk, the Fourier transform is
approximately the integral of the distribution over the fi
wavelengthl52p/k or

E
1

l C

qb

dq

q
512C8

1

lb
512C9kb. ~7!

When there is a cusp, the limiting distribution is not a Gau
ian, but has the following form@4#

L̃N~k!5e2bNukub, k.0
~8!

L̃N~k!5e2b* Nukub, k,0.

By rescalingk, b can be made into a pure phase. For the c
whereP(q) is symmetric about zero, the Fourier transfor
is real andb51. It is clear that this distribution has th
correct form neark50, and increasingN is equivalent to a
rescaling ofk. The limiting distribution gets wider withou
changing shape, so it is a fixed point of convolution.

We will need one special nonsymmetric distribution, t
distribution of a flight composed of only positive steps.
this case,LN(Q) is zero for Q negative, thereforeL̃N(k)
must be analytic in the lower half-plane. In other word
L̃(k) for k,0 is the analytic continuation ofL̃(k) for k.0.
As k is rotated to2k through negative imaginary values,kb

acquires a phasee2p ib. We conclude that

b* 5be2 ipb ~9!
01612
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b5eipb/2.

For the special caseb5 1
2 , b5(11 i )/A2.

And finally, if we were to compute the first-passage-tim
distribution for the process

dx

dt
5j~ t !, ~10!

where j(t) is Lévy noise ~a Lévy variable symmetrically
distributed about zero!, then we would find a first-passage
time exponent of12 . Even though the Le´vy flight is irregular,
the position does not cross zero any faster than it does in
nearest-neighbor random walk. This is the Sparre-Ander
theorem once more, regarding which we refer the reade
Ref. @1# for the details.

III. NUMERICAL RESULTS

To obtain the first-passage-time exponentbn numerically
is not as easy as it might appear. Direct numerical integra
of the equation of motion becomes more cumbersome w
increasingn. To efficiently simulate the equation, we hav
calculated the free-space propagation kernels forn52,3,4,5
~see Appendix!. In this context, the propagation kernel is th
probability distribution of x(t01ts), given initial values
x(t0), x8(t0), . . . ,x(n21)(t0) and final values x8(t0
1ts), . . . ,x(n21)(t01ts). We first generate the highest-ord
time derivative,x(n21)(t01ts), and then new values for eac
lower-order time derivative untilx(t01ts) is updated.

The next time stepts is chosen so that the variance for th
next value ofx will be smaller. The ratio of the new varianc
to the old isx. x should be small so that the walk does n
become negative then positive within one time step. T
probability of this occurring is exponentially small in th
inverse ofx. With this algorithm, ifx(t0) is large, the time
steps are large as well. The number of time steps required
the simulation only grows logarithmically as a function
the first-passage time. Near the end of the simulation, whex
is small, the time steps become small as well, and accurac
not sacrificed.

The first-passage-time distributions forn52,3,4,5 are
shown in Fig. 1 on a log-log scale. Each plot contains
proximately 107 samples in bins of doubling size. Table
contains the linear regression values of the exponents.
results are independent ofx over the range@0.025,0.005#,
indicating thatx is small enough.

IV. THE FIRST-PASSAGE-TIME EXPONENT FOR nÄ2

For then52 case,x(t) is the integral of a random walk
In other words, the variable that executes the random wal
x8(t), the velocity. To exploit this fact, we introduce a ne
time counteri and divide the time axis into intervalsDt i
between the points where the velocity crosses zero. Then
interval sizesDt i are first-passage times for an ordinary ra
dom walk.

There is one complication. Referring back to Eq.~3!, the
time scale until a zero-crossing is the initial value squar
0-2



c
m

te
m
n

es
g
s

n-
p

w

y
a

e

he
al
as
the

-

e

r
-

s
s

in-
n to
l
-
—
r
st

rties

s

p-

ac
e

r
e
rg
mu
ox

fit

FIRST-PASSAGE-TIME EXPONENT FOR HIGHER- . . . PHYSICAL REVIEW E 64 016120
So right after a zero crossing, the initial value is zero. Sin
the probability distribution is singular at zero, the rando
walk reaches zero again instantly, and then again, infini
many times. This is a well-known property of rando
walks—they jiggle about every value before moving o
Since this affects only the distribution of the smallest tim
we cut off the distribution of times near zero by imaginin
the system on a lattice. Now we have a finite and discrete
of time intervalsDt i with each interval distributed with the
Levy exponentb15 1

2 . These time intervals are indepe
dently distributed because the velocity undergoes a sim
random walk.

To compute the first-passage time for the position,
must compute the total timet5( i 51

N Dt i until the position
becomes negative.N is the first zero crossing of the velocit
that happens at a negative value of the position so we
actually slightly overestimatingt by summingN intervals.
We can control for this by summingN21 intervals instead,
which would be a slight underestimate. This estimate oft, be
it over or under, should not affect the first-passage-time

FIG. 1. Log-log plot of the probability of a first-passage timet
~in arbitrary units! occurring within the interval@ t/A2,A2t), where
the probability has been multiplied by a different constant for e
curve so that they do not overlap. The open circles denote num
cal data forn52; the open squares forn53; the open diamonds fo
n54; the open triangles forn55. The solid lines represent th
results of the linear regression. The size of the symbols is la
than the error bars. As we only used double precision in our si
lations, there is an upper cutoff in the first-passage time of appr
mately 1016.

TABLE I. The first-passage-time exponents obtained from
to the data shown in Fig. 1.

n x bn

2 0.005 0.25060.001
3 0.005 0.22060.001
4 0.005 0.21060.001
5 0.005 0.20460.001
01612
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ponent since we do not expect the last position step~corre-
sponding to the partial time step! to be arbitrarily large.

To continue we need to know two things:~1! the distri-
bution of N, f (N), and~2! given N, the probability distribu-
tion of t.

The first problem is actually no problem at all. Since t
velocity is just as likely to go up at the start of a time interv
as it is to go down, the position is as likely to be positive
negative. Therefore, the position is a symmetric walk on
zero crossings~actually, a symmetric Le´vy flight with inde-
pendent steps distributed with Le´vy exponent 1/3 using scal
ing arguments!. By the Sparre-Anderson theorem@1#, the
distribution of the first-passageN is asymptotically the same
as for an unbiased, simple random walk, and

f ~N!;
1

N3/2
~11!

for largeN.
And now for the second problem. The distribution of th

sum ofN-independentDt ’s, LN(t)dt, is a Lévy distribution.
The fact that the steps are distributed with Le´vy exponent
b15 1

2 and that all of theDt ’s are positive fixes the Fourie
transform of the Le´vy distribution. The inverse Fourier trans
form can be computed exactly in this case. For large t,

LN~ t !dt;
N

t1/2
e2N2/2t

dt

t
. ~12!

This distribution is small forN2.t, and it may be approxi-
mated by (N/t1/2)(dt/t) for N2,t. Using scaling, analogou
results may be derived forbÞ 1

2 , where a closed form doe
not exist.

Now, the time intervals we are adding are not really
dependent. This is because we are restricting attentio
Lévy flights that end on theNth step and this is an atypica
sample of all Le´vy flights with N steps. However, the prop
erties we actually use from the previous distribution
namely, that it is small forN2.t and the appropriate powe
law for larget—are the scaling laws for the sum of almo
any collection ofN Lévy variables, whereN is large. So,
although we do not prove it, we assume that these prope
hold for the correctLN(t)dt, or the distribution of the time
elapsed for those Le´vy flights that end on theNth step. This
is why we refer to our derivation as heuristic.

All the ingredients are now in place for computingb2.
There is a probabilityf (N) for any value ofN, and givenN,
we know the probability distribution oft. So to find the total
distribution of t, we sum up the conditional distribution
LN(t) weighted by the probability ofN, or

r2~ t !dt5 (
N50

`

f ~N!LN~ t !dt. ~13!

Approximating the sum with an integral and using the a
proximate scaling form forLN(t),
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r2~ t !dt;E
0

`

dN f~N!LN~ t !dt;E
0

t1/2

dN
1

N3/2

N

t3/2
dt.

~14!

We obtain the following asymptotic form,

r2~ t !dt5
1

t1/4

dt

t
, ~15!

so thatb25 1
4 . This result is unchanged whenN is shifted by

one unit, so that the last step is of no consequence for
exponent as there are typically many zero crossings, ma
our derivation self-consistent.

Sinai has rigorously computedb2 @3#; we have used som
similar methods.

V. THE FIRST-PASSAGE-TIME EXPONENT FOR nÐ3

The next random walk we consider is the random su
process, governed by

d3x

dt3
5

da

dt
5h~ t !. ~16!

The acceleration is now an ordinary random walk. Afte
time t, the acceleration, velocity and position scale asatyp
;t1/2, v typ;t3/2, andxtyp;t5/2, respectively. We proceed a
we did for then52 case. Once again, we divide the tim
axis by the zero crossings of the velocity. The time interv
Dt i are now distributed with the Le´vy exponentb25 1

4 . The
sum of N-independentDt ’s is approximately zero fort
,N4, and for largert, is approximated by

LN~ t !dt;
N

t1/4

dt

t
. ~17!

Proceeding casually, we may think that, as before,
distribution f (N) has Lévy exponent of12 since that result is
universal for all symmetric walks. We perform an integr
analogous to Eq.~14! and obtain a first-passage-time Le´vy
exponentb35 1

8 . However, our numerical simulations yield
Lévy exponent of 0.22060.001. The exponent is closer to1

4

than 1
8 . Clearly, there is something wrong.

The method fails because there are nowcorrelationsbe-
tween theDxi steps, whereDxi is the change inx during a
Dt i step. In the previousn52 case, the velocity undergoes
simple random walk and so its sign is random after a z
crossing. In thisn53 case, the velocity is the integral of
random walk. It is a differentiable function and so almo
certainly changes sign when it hits zero. Consequently,
Dxi steps alternate in sign. In addition, as the accelera
drifts about, theDxi steps increase in size. The accelerat
at the beginning of each next-time interval is larger on av
age than the previous one, making the nextDt i and, there-
fore, the nextDxi larger than the last.

A large number of alternating, increasing steps will rea
zero quickly. From the numerical simulation, with each o
cillation there is a definite probability of reaching zero that
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almost constant. In other words, the distributionf (N) is not
a power law as in then52 case, but an exponential,

f ~N!;e2l3(2N11) with l350.7960.02. ~18!

See Table II and the corresponding Fig. 2. The numbe
velocity zero crossings must be odd because the position
become negative only after the velocity has become ne
tive. With this exponential distribution, the number of tim
intervals one must add up is actually quite small. Howev
adding a finite number of independently drawn Le´vy vari-
ables distributed with Le´vy exponent 1

4 produces a flight
with Lévy exponent14 , so it is quite surprising that addingN
of them together, whereN has a finite mean, leads to any
thing other than an exponent of1

4 .
And yet, adding a small number ofcorrelatedLévy vari-

ables does shift the exponent. To quantitatively describe
correlation in magnitude, we need to determine how the
tial acceleration sets the time scale for eachDt i interval. We
saw from Eq.~3! for the n51 random walk that the time
scale is the initial value squared. Therefore, the time sc
between two acceleration zero crossings is the initial ac
eration squared. Because the time between velocity z

TABLE II. The first-passage-time exponent estimates for then
>3, which uses the numerical exponential decay constantln and
the numerical results forbn21. This estimate is to be compare
with the last column in Table I.

n x ln bn
est

3 0.005 0.7960.02 0.199
4 0.005 1.5560.02 0.210
5 0.005 1.9260.02 0.205

FIG. 2. Log-linear plot of the distribution of number of velocit
zero crossingsf (N), wheref (N) has been multiplied by a differen
constant for each curve so that they shift and do not overlap.
symbols here are the same as in Fig. 1. For then53 curve, we
ignore the first data point in the linear regression as there is s
memory of the initial conditions for this point.
0-4
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crossings is comprised of many acceleration zero crossi
the time scale between velocity zero crossings is fixed in
same way.

This argument is somewhat general, so it is nice to ve
that it is correct. The coefficient in the formula for the firs
passage-time distribution was computed in Ref.@2# for the
case of then52 random walk by solving the Fokker-Planc
equation with the appropriate boundary conditions.

r2~ t;v0 ,x0→0!dt;
Av0

t1/4

dt

t
5S v0

At
D 1/2

dt

t
~19!

for large t. Note thatt typ;v0
2 . Since the acceleration in th

n53 case is exactly the same as the velocity in then52
case, we can translate this result inton53 language by re-
placingv with a. Therefore in then53 case, the square o
the initial acceleration determines the time scale until
next zero crossing.

So the square of the initial acceleration at each time s
determines the scale of the next time step. Since the ac
eration is an ordinary random walk, its square has a s
proportional to the total elapsed time. Therefore,Dt5Tq,
where q is a unit Lévy variable andT is the total elapsed
time. To describe this correlated process, we set the unit
time so thatDt1 is a unit size Le´vy variableq1. The next
time stepDt2 is no longer unit sized, but has a magnitu
determined by the square of the acceleration or, equivale
the total elapsed time. So to findDt2 we takeDt1 and mul-
tiply it by separate, independent, unit Le´vy variableq2. To
find Dt3, we take the total elapsed time,Dt11Dt2, which is
the expected square acceleration, and multiply byq3. In
equations,

Dt15q1 ,

Dt25~Dt1!q2 ,
~20!

Dt35~Dt11Dt2!q3 ,

Dt45~Dt11Dt21Dt3!q4 .

The total timet that has elapsed afterN steps is then

t5q1)
i 52

N

~11qi !. ~21!

The asymptotic distribution is extracted whenqi@1. This
means we need to determine the distribution of products
Lévy variables. Taking the natural logarithm, the produ
becomes a sum. Definez25 ln(Dt2), f 15 ln(q1), and f 2
5 ln(q2). We use the following approximate distribution fo
both Levy variables,

P~q!dq5
ac0

a

qa

dq

q
,

~22!
P~q!dq50, q,c0
01612
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with c051. Keep in mind, in order to computeb3, the Lévy
exponenta of the qi variables equals1

4 . In terms of the
transformed variables, the distribution off 1 and f 2 is given
by

P~ f !5a e2a f . ~23!

If q1 andq2 haddifferentLévy exponents,a1.a2, the dis-
tribution of the sum would be

E
0

z2
d f1 P~ f 1!P~z22 f 1!5

a1a2

~a22a1!
~e2a1 z22e2a2 z2!.

~24!

For largez2 , P(z2)'a2 e2a2z2, i.e., the smaller exponen
dominates the tail. However, whena15a25a, we have

P~z2!5a2z2e2az2. ~25!

In terms ofq1 andq2, the probability distribution ofq1q2 is
@8#

P~Dt2!d~Dt2!5a2
ln~Dt2!

Dt2
a

d~Dt2!

Dt2
. ~26!

In general, the probability distribution fori independent
Lévy variables multiplied together is

P~zi !5
a i

~ i 21!!
zi

i 21e2azi. ~27!

The (i 21)! is required for normalization. Transformin
back to the originalDt i variables,

P~Dt i !d~Dt i !5
a i

~ i 21!!

~ ln Dt i !
i 21

Dt i
a

d~Dt i !

Dt i
. ~28!

We substitutei 5N anda5 1
4 and this distribution become

LN(t)— the probability distribution of theNth-passage time
of the velocity. Unlike theNth passage time of the acceler
tion, LN(t) is not a Lévy stable distribution because of th
correlations. More specifically,LN(t) is the distribution of a
product ofN Lévy variables)qi . The expression for theNth
passage time we derived earlier is)(qi11), which differs in
subleading terms from the previous expression.

Note thatLN(t) coincides with theNth-passage-time dis
tribution for the position in then52 case. Both the velocity
for n53 and the position forn52 are integrals of ann51
random walk. Observe that the distributionL2(t) is not the
same as the distribution of the sum of two variables distr
uted asL1(t)—there is an additional logarithm. We dete
mined L2(t) numerically and it agrees with this form~Fig.
3!. For higherN, there areN21 factors of ln(t).

Before estimatingb3, we must make one last argument
the form of an approximation. Up until this point,LN(t)dt
assumes that each step is free to be larger than the prev
one. This is because we have not yet taken into account
conditional dependence of the correlation on the position
ing positive for the walk to persist. In fact, the generic sit
ation when the steps are ever-increasing and alternatin
0-5
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sign is for there to be only one step. This means that wa
that survive more than one step are special. For these w
the second step is an exceptional pick from the distributi
Theeasiestway for the walk to survive is for the second ste
to be approximately the same size as the first step. In o
words, the size of the first step cuts off the distribution of t
second step. The result is that the second step share
distribution of the first. For the third step, the position
positive, and now its time interval is distributed the same
that of the second step would have been. Generalizing
argument, any twocompletetime intervals can simply be
lumped together as one and we conclude that the distribu
of the total afterN steps is the same as the distribution of t
step sizes afterN/2 steps. In other words,LN(t)dt is not the
correct distribution forN steps, butLN/2(t)dt is. We present
evidence for the even-numbered complete steps being
cally small in Fig. 4. Forn53, the second step is, on ave
age, about five times smaller than the first time interval.
n54, the second time interval is typically twice as small
the first.

So we now have all the ingredients to estimate the Le´vy
exponentb3. We arrive at

r3~ t !dt;e2l3
1

t5/4 (
N50

`
1

4N

1

N!
@ ln~ t !#Ne22l3Ndt ~29!

5e2l3
1

t5/4
$exp@~e22l3/4!# ln~ t !%dt, ~30!

FIG. 3. Log-log plot ofL1(t) andL2(t) for the n52 case, i.e.,
the probability of a first~or second! position passage timet ~in
arbitrary units! occurring within the interval@ t/A2,A2t). The open
circles denote numerical data forL1(t); the inverted triangles for
L2(t). While the solid line represents the results of the linear
gression; the dot-dashed line represents Eq.~28! up to a proportion-
ality constant, withi 52 andDt i5t. As we must keep track of eve
larger absolute values of the position forN52, the double precision
constraint cuts off the tail of the distribution even more so forN
52 than for N51. Once again, the symbols are larger than
error bars and there are approximately 107 samples.
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est5 1

4 2(e22l3/4). Substituting the numerica
valuel350.79, we find the Le´vy index 0.199. This result is
a shift in the right direction from our original estimate, but
is still too large.

Figure 4 suggests that our estimation scheme may w
better for n.3 and so we extend the method ton
54,5, . . . . Asbefore, we define the two Le´vy flights of the
time and position intervals between velocity zero crossin
For n.3, the size correlation factor for the time interv
Lévy flight turns out to be the same factor of the elaps
time as in then53 case with each step retaining only th
memory of the highest-order derivative. To be more prec
the initial acceleration at the start of each time interval
the n53 case is replaced by the highest-order random v
able. We ignore any other memory effects. Then, for
nth-order process, the step-size distribution for theDt i inter-
vals is governed by the passage time exponent for then
21)th-order process. Referring back to Eq.~28!, i 5N and
a5bn21. In addition, the correlation in the sign of theDxi
still persists for thenth-order random walk so the distribu
tion f (N) remains exponential with a decay constant that
determine numerically. Therefore, thenth Lévy exponent
will be a small perturbation about the (n21)th first-passage-
time exponent with a shift of2bn21e22ln. For n54 and
n55, we observe that our estimation scheme yields m
accurate results. See Table II.

As in then52 case, forn>3 we consider the last partia
time step to be a full one. Given thatLN/2(t)dt is the more
appropriate distribution, the bulk of the first-passage time
a givenN is taken up during the last two steps~up to sub-
leading corrections!. So the last partial time steps should b
distributed just as the first-passage time. We have num
cally verified this to be the case.

-

e

FIG. 4. Plot of the probability of the ratio of the second com
plete time interval to the first complete time interval, denoted as,
occurring within the interval@s,s10.01) for then53 ~the open
squares! and n54 ~the open diamonds! random walk. Both prob-
abilities eventually fall off exponentially as opposed to being d
tributed asL2(Dt2)d(Dt2), indicating that the second step is indee
an exceptional pick from the distribution for the first time interva
Each curve contains approximately 106 samples.
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Majumdaret al. @5# have constructed a completely diffe
ent approximation scheme to compute the first-passage-
exponent for these higher-order random walks. While
refer the reader to Ref.@5# for the details, their scheme i
rather accurate forb2 andb3.

VI. THE nÄ` LIMIT

As n increases, we also expect the decay constantln to
grow. In fact, in the limit thatn becomes large, the first
passage-time exponent reaches a limiting value. We cons
the solution to Eq.~1! with initial conditions x(0)5x8(0)
5•••5xn(0)50. It is

x~ t !5E
0

t

dtnE
0

tn
dtn21•••E

0

t2
dt1 h~ t1!, ~31!

which is a linear function ofh and therefore is the inne
product ofh with a kernel. In this case,

x~ t !5E
0

t

dt8
~ t2t8!(n21)

~n21!!
h~ t8!. ~32!

It is easy to see that this expression satisfies Eq.~1!.
When solving for the time whenx(t) first becomes zero

it is permitted to rescalex(t) by any finite number, even i
that number is a function of time. This does not change
set of points wherex(t) is zero. Rescaling bytn so that
y(t)5x(t)/tn and dropping constant factors,

y~ t !5
1

t E0

t

dt8S 12
t8

t D n21

h~ t8!. ~33!

In the largen limit, @12(t8/t)#n is indistinguishable from
an exponential in the region where it has the most wei
(t8,nt). The result is that

y~ t !5
1

t E0

t

dt8e2nt8/th~ t8!. ~34!

Majumdar et al. @5# have noted that then5` random
walk has the same first-passage-time exponent as a very
ferent system—the solution of the two-dimensional diffusi
equation with a random initial condition,

dr

dt
5¹2r,

~35!
r~x,y,0!5h~x,y!.

In polar coordinates, the value ofr(0,t) is given by

r~0,t !5
1

2ptE d2rW e2r 2/2t
1

Ar
h~r ,u!, ~36!

where we have usedd(x)d(y)5r 21d(r )d(u). The angular
integration leaves the integral in terms of a new random v
able,h8(r )5(1/A2p)*duh(r ,u). We now have
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r~0,t !5
1

A2pt
E drAre2r 2/2th8~r !. ~37!

Transforming variables tou5r 2, we arrive at

1

2

1

tAp
E du e2u/2th~u!, ~38!

where we used the fact thatd(r )5d(u)2Au so thath8(r )
5h(u)A2u1/4.

Comparing this kernel with the kernel for then5` ran-
dom walk, we see that they are indeed the same. As a re
the distribution of times for the diffusive field to change sig
at one point is the same as the distribution of the fir
passage time for then5` random walk for long times,
where the initial conditions are irrelevant.

VII. PHYSICAL SYSTEMS

Consider a planar crack front moving through roug
brittle material. In the quasistatic regime, the planar cra
front is a line with long-range static elasticity. There is
uniform stress applied to the material, which drives the cra
front forward. But there are also local, random variations
the fracture toughness that the crack front needs to overc
to move forward. These randomly varying forces are pinn
forces. The competition between the global pulling and lo
pinning forces as mediated by the elasticity of the crack fr
determines its dynamics. For small values of the appl
force, the pinning forces eventually dominate and the cr
front remains stuck. For some finite value of the appli
force, the pinning forces are not strong enough to keep
crack front in place and it moves forward. The bounda
between these two phases is the depinning transition.

Approaching the depinning transition from the static sid
a small increase in the applied force causes a tiny portion
the crack front to move forward. This portion causes a f
more regions to move forward as well, only to be eventua
stopped by more strongly pinned regions. The only role
the applied force here is to induce the initial motion of t
tiny portion. It remains fixed until the local motion of th
crack front stops. Near the depinning transition, there exis
sequence of these discrete, localizedavalanche eventswith
distribution of sizest. The avalanche size is defined as t
total amount of the crack front that has moved forward d
ing these events. A power law distribution of avalanche si
as the force approaches the critical force indicates a cont
ous, second-order-like depinning transition.

Near the depinning transition, the motion of the cra
front is jerky with lots of stopping and starting. We therefo
model its dynamics in terms of discrete space and tim
Within an infinite-range model, where each crack front se
ment is coupled equally to every other, the spatial degree
freedom along the crack front are averaged out. We definyt
to be the total number of segments of the crack front that
forward at discrete timet. Given that we are only concerne
with the few segments that are on the verge of hopping
ward,yt is Poissonian distributed. In this infinite-range lim
0-7
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and in the dissipative regime, the mean ofyt is determined
by the number of segments that have hopped at the prev
time step only. In addition, the mean ofyt fluctuates statis-
tically until it reaches zero, whereupon the motion stops
the limit of large avalanches where things are chang
slowly with time, the equation of motion for the avalanch
at the depinning transition is

dy

dt
5y1/2h~ t ! ~39!

in the Ito representation~the time derivatives are forwar
differences!. Wheny(t) reaches zero, the avalanche is ov
We refer the reader to Ref.@6# for a more detailed derivation

So far, we have neglected any effects like elastic wa
that are indeed present along the crack front. If a piece of
crack front moves forward, that motion creates an extra tr
sient force on its neighbors as the elastic wave propag
along the crack front. The extra transient stress is calle
stress overshoot. This effect is different than pure iner
which would be an extra transient stress on the segment i
after it jumps. However, we demonstrate that the two effe
are similar in this infinite-range model for a particular val
of the stress overshoot@6#. If we were to take into accoun
elastic waves along the crack front, the mean ofyt depends
on several previous time steps. In other words, there
higher-order corrections to Eq.~39! that are usually irrel-
evant in the long time limit. The most significant terms a
the first and second time derivatives, and the first time
rivative is the only relevant term. If we fine-tune the coef
cient of dy/dt to zero, we arrive at a tricritical point. Here
the second-order derivative is the most relevant term and
obtain the equation of motion

d2y

dt2
5y1/2h~ t !. ~40!

The variable we are interested in is

t5E
0

t f
dt y~ t !, ~41!

the avalanche size. We emphasize thatt f is determined by
the boundary conditiony(t f)50.

In order to find the distribution oft, we use the size of the
avalanche as a new path-dependent time coordinate.
transform time on each particular path in the path-integ
differently, in a way that depends on the history ofy(t). This
transformation alters the density ofy(t)’s at any given time,
mixing togethery(t)’s from different times so that they ap
pear simultaneous. Because of this property, it is difficult
perform the transformation in the Fokker-Planck equati
but the transformation is easy in the path integral.

A reparametrization of time, even a path-dependent o
does not affect the answers to questions that do not inv
the time explicitly. The probability for a stochastic walker
arrive at pointB from point A is independent of the globa
time, but the probability for a stochastic walker to be at po
B at time t is not. Similarly, the avalanche size of a give
01612
us

n
g

.

s
e

n-
es
a
,

elf
ts

re

-

e

e
l

o
;

e,
e

t

walk does not involve the time lapse of the walk as the up
cutoff of the integral is determined by the boundary con
tion on y(t) and not the time explicitly.

Choosing the new time coordinatet to tick at the new
rate,

dt

dt
5y, ~42!

and using the property of Gaussian noise,h„t(t)…
5@h(t)/A(dt/dt)#, the ~Ito! equation pair

dv
dt

5y1/2h~ t !, ~43!

dy

dt
5v

become

dv
dt

5h~ t !, ~44!

y
dy

dt
5v.

Replacingy with x5y2/2 completes the transformation. Th
zeros ofy are also the zeros ofx so the value oft whenx is
zero is then the avalanche size. We therefore find the di
bution of avalanche sizes to be the distribution of fir
passage timest for the n52 random walk. It has a Le´vy
exponent14 .

We may perform the same transformation on the Fokk
Planck equation directly, although the motivation then b
comes obscure. Consider the following probabilit
conserving equation,

]P

]t
52y

]P

]t
1

1

2
y

]2P

]v2
2v

]P

]y
, ~45!

for a new quantityPt(x,v,t). If we integratePt(x,v,t) over
all t, we recover the original Fokker-Planck equation. On
other hand, if integratePt(x,v,t) with respect tot from zero
to infinity, we obtain

]K

]t
5

1

2

]2K

]v2
2

v
y

]K

]y
, ~46!

whereK(v,y,t)5*0
`dt Pt(v,y,t). Defining x5y2/2, as be-

fore, gives

]K

]t
5

1

2

]2K

]v2
2v

]K

]x
, ~47!

which is the Fokker-Planck equation for then52 random
walk. This demonstrates the equivalence of the two pr
lems.
0-8
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It should now be clear that the avalanche size expon
for Eq. ~39! is 1

2 since the same time reparametrization m
be performed in that case also. This relates the avalan
size exponent to the first-passage time of then51 random
walk.

VIII. CONCLUSIONS

We have presented a relation between the shift in
first-passage-time exponent and the decay rate of the p
ability of N velocity zero crossings for thenth random walk.
The method can be exact forn52, but not forn>3 because
of correlations. More work is needed to estimate the de
constant off (N) since this would determine the convergen
rate of the exponents to then5` value. In addition, we do
not have any bounds on the error of the first-passage-
exponent as the approximation is uncontrolled. We also
not know which types of correlations for Le´vy flights lead to
shifts in exponents and which do not. A classification
correlations in terms of these two categories might be use

We have opted to slice up time in terms of velocity ze
crossings, instead of using the global time in the Fokk
Planck equation. This approach allows us to analyze
higher-order random walks in terms of a one-dimensio
Lévy process since the phase variables are the position
the time only. The remaining variables are subsumed in
(n21)th-order random walk that the velocity undergoes
tween the zero-crossings.

With Eq. ~42! we have also reparametrized the glob
time, but in a different way. We use a path-dependent t
transformation to analyze the avalanche statistics of a n
linear second-order random walk in terms of the fir
passage-time exponent of the linear second-order ran
walk. This allows us to give a novel physical interpretati
of the first-passage-time exponent for then52 case.

Since the avalanche size does not depend on the gl
time, it has been known to us that one can find the station
solution of the Fokker-Planck equation corresponding to
nonlinear random walk in Eq.~40! and then arrive at the
avalanche size exponent after invoking a simple scaling
gument@9#. Since this method gives a new derivation of t
avalanche size exponent, it indirectly gives a new derivat
of the first-passage-time exponent for then52 case. This
insight may be useful to construct a derivation ofbn for n
>3.

Finally, these higher-order random walks could be r
evant for more general forms of dynamic stress trans
along a crack front, or other extended elastic objects.
instance, one can approach a fine-tuned critical point wh
the coefficients of the first and second time derivative ter
are zero. Then the third-order time derivative is the m
relevant term, and we arrive at a higher-order critical po
While the time reparametrization given by Eq.~42! does not
allow us to equate the avalanche size exponent with the fi
passage time-exponent in this case, we remain optimistic
either exponent may be relevant for various physical s
tems.

Note added in proof.Recently, we were informed of ye
another estimation scheme to computebn for n>3 @10#.
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APPENDIX: THE KERNEL OF HIGHER-ORDER
RANDOM WALKS

We begin with the partition function for all higher-orde
random walks,

Z5E D@h~ t !#expH 2 1
2 E

0

T

@h~ t !#2J . ~A1!

We change variables fromh(t) to x(t), where dnx/dtn

5h(t), and use forward difference time derivatives. W
change variables with the insertion *x(0)5x0

x(T)5xf

D@x(t)#d„@dnx(t)/dtn#2h(t)… to arrive at

E
x(0)5x0

x(T)5xf
D@x~ t !#expH 2 1

2 E
0

T

@dnx~ t !/dtn#2J . ~A2!

We then minimize the action to find the classical equation
motion with vanishing variations on the boundary for a
derivatives up to the (n21)th derivative. In then52 case
we find the equation of motion,

d4x~ t !

dt4
50. ~A3!

We then impose the following constraints on thex(t) trajec-
tory, x(0)5x0 , x(T)5xf , x8(0)5v0 , and x8(T)5v f ,
yielding

x~ t !5x01v0t1
~3xf23x02v fT22v0T!

T2
t2

1

S v f1v02
2

T
~xf2x0! D

T2
t3. ~A4!

The path integral is quadratic, so the partition function
proportional to the exponential of the classical action. S
stituting the classical solution into the action and integrat
gives the propagation kernel,

Pt~v f ,xf ;v0 ,x0!5
A3

p t2
exp@2~v f2v0!2/2t#

3expH 26F ~xf2x0!2
1

2
~v f1v0!t G2

/t3J . ~A5!

We normalize the propagation kernel to have integral un
0-9
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Notice that the kernel is the product of a Gaussian inv and a
gaussian inx. Given thatx(t) is the time integral ofv(t) and
that the sum of Gaussian variables is Gaussian, if the ve
ity is Gaussian, so is the position. Not only does the posit
-

ys

01612
c-
n

spread faster than the velocity, but it also drifts with tim
with a coefficient that depends on the velocity. This meth
works for highern giving us the following propagation ker
nels forn53,4,5:
Pt~af ,v f ,xf ;a0 ,v0 ,x0!;
1

t9/2
exp@2~1/2t !~af2a0!2#expH 2~6t3!F ~v f2v0!2

1

2
~af1a0!t G2J

3expH 2~360/t5!F ~xf2x0!2
1

2
~v01v f !t1

1

12
~af2a0!t2G2J ~A6!

for n53,

Pt~sf ,af ,v f ,xf ;s0 ,a0 ,v0 ,x0!;
1

t8
exp@2~sf2s0!2/2t#expH 2~6/t3!F ~af2a0!2

1

2
~sf1s0!t G2J

3expH 2~360/t5!F ~v f2v0!2
1

2
~af1a0!t1

1

12
~sf2s0!t2G2J

3expH 2~50 400/t7!S ~xf2x0!2
1

2
~v f1v0!t1

1

10
~af2a0!t22

1

120
~sf1s0!t3D 2J

~A7!

for n54 with da(t)/dt5s(t), and

Pt~uf ,sf ,af ,v f ,xf ;u0 ,s0 ,a0 ,v0 ,x0!;
1

t25/2
exp@2~uf2u0!2/2t#expH 26/t3F ~sf2s0!2

1

2
~uf1u0!t G2J

3expH 2~360/t5!F ~af2a0!2
1

2
~sf1s0!t1

1

12
~uf2u0!t2G2J

3expH 2~50 400/t7!F ~v f2v0!2
1

2
~af1a0!t1

1

10
~sf2s0!t22

1

120
~uf1u0!t3G2J

3expH 2~12 700 800/t9!F ~xf2x0!2
1

2
~v f1v0!t1

3

28
~af2a0!t22

1

84
~sf1s0!t3

1
1

1680
~uf2u0!t4G2J ~A8!

for n55 with ds(t)/dt5u(t).
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